
StableNextSol – MP1307

- STABILITY AND DEGRADATION STUDIES OF ORGANIC AND HYBRID PV DEVICES BY MEANS OF CONCENTRATED SUNLIGHT-
 STSM Ref No:

Laura Ciammaruchi, Iris Visoly-Fisher (BGU), Francesca Brunetti (UTV)

3rd MC Meeting, 2nd WG Meeting, 2nd Conference E-MRS Symposium E @ E-MRS. Lile, Fr. May 11th-12th, 2015
HOST LAB: Center for Hybrid and Organic Solar Energy (CHOSE), University of Rome Tor Vergata (UTV), Italy
GUEST LAB: Dept. of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev (BGU), Israel
ESR NAME: Laura Ciammaruchi - Duration: 30 days

Objectives:
(1) Fabricate OPV cells with PTB7:PCBM active layer, blended in chlorinated and non-chlorinated solvents (@UTV), to study shelf-life and accelerated degradation with concentrated sunlight (@BGU).
(2) Learning basic perovskite syntesis processes (@UTV), in order to establish a fabrication station, and study the stability as a function of the halogen content in the perovskite material (@BGU).
8.7% Power conversion efficiency polymer solar cell realized with non-chlorinated solvents

• Project 1 - Experiments performed

- Fabricated two batches of [ITO/PEIE/PTB7:[70]PCBM/MoO3/Ag] cells, using Chlorobenzene and o-Xylene as solvents.

- Monitored shelf-life of non-encapsulated devices in glove-box/air. Measurements performed for 1080 hours.
J-V curve evolution over time for devices realized with different solvents.

Chlorobenzene

O-Xylene

STABILITY AND DEGRADATION STUDIES OF ORGANIC AND HYBRID PV DEVICES BY MEANS OF CONCENTRATED SUNLIGHT
STABILITY AND DEGRADATION STUDIES OF ORGANIC AND HYBRID PV DEVICES BY MEANS OF CONCENTRATED SUNLIGHT

- Control (glove-box storage)
- Chlorobenzene (non-encaps)
- o-Xylene (non-encaps)

Graphs showing changes in:
- V_{oc} normalized efficiency
- J_{sc} normalized current
- FF normalized fill factor
- Efficiency Eff over shelf life (hrs) for different conditions.
STABILITY AND DEGRADATION STUDIES OF ORGANIC AND HYBRID PV DEVICES BY MEANS OF CONCENTRATED SUNLIGHT

- **Eff** (Efficiency)
 - control (glove-box storage)
 - Chlorobenzene (non-encaps)
 - o-Xylene (non-encaps)

- **Jsc** (Short Circuit Current Density)
 - control (glove-box storage)
 - Chlorobenzene (non-encaps)
 - o-Xylene (non-encaps)

- **FF** (Fill Factor)
 - control (glove-box storage)
 - Chlorobenzene (non-encaps)
 - o-Xylene (non-encaps)

- **Voc** (Open Circuit Voltage)
 - control (glove-box storage)
 - Chlorobenzene (non-encaps)
 - o-Xylene (non-encaps)
RESULTS - (1)

CHLOROBENZENE

O-XYLENE
AFM phase

CB-blended PAL_fresh

After 400h shelf life

O-Xy blended PAL_fresh

After 400h shelf life

STABILITY AND DEGRADATION STUDIES OF ORGANIC AND HYBRID PV DEVICES BY MEANS OF CONCENTRATED SUNLIGHT
Difference spectra

- PTB7:PCBM in Chlorobenzene 400h shelf life
- PTB7:PCBM in o-Xylene 400h shelf life

Normalized loss of absorbed photons vs. wavelength (nm)
• CONCLUSIONS

- Successful and effective collaboration established between the two partner institutions. Complementary fabrication/characterization tools shared and employed

- O-xylene – blended films/cells show comparable/better shelf-life stability compared to chlorobenzene-blended films/cells.

>>Poster presented at HOPV 2015 Conference
• FUTURE WORK
 - @ BGU: accelerated stress tests under varying T and photon dose of encapsulated devices/ films.
 - @UTV: parallel outdoor degradation studies, to test devices at different latitudes and radiation intensities.